Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environ Int ; 166: 107331, 2022 Jun 02.
Article in English | MEDLINE | ID: covidwho-1944933

ABSTRACT

OBJECTIVE: Quantifying the spatial and socioeconomic variation of mortality burden attributable to particulate matters with aerodynamic diameter ≤ 2.5 µm (PM2.5) has important implications for pollution control policy. This study aims to examine the regional and socioeconomic disparities in the mortality burden attributable to long-term exposure to ambient PM2.5 in China. METHODS: Using data of 296 cities across China from 2015 to 2019, we estimated all-cause mortality (people aged ≥ 16 years) attributable to the long-term exposure to ambient PM2.5 above the new WHO air quality guideline (5 µg/m3). Attributed fraction (AF), attributed deaths (AD), attributed mortality rate (AMR) and total value of statistical life lost (VSL) by regional and socioeconomic levels were reported. RESULTS: Over the period of 2015-2019, 17.0% [95% confidence interval (CI): 7.4-25.2] of all-cause mortality were attributable to long-term exposure to ambient PM2.5, corresponding to 1,425.2 thousand deaths (95% CI: 622.4-2,099.6), 103.5/105 (95% CI: 44.9-153.3) AMR, and 1006.9 billion USD (95% CI: 439.8-1483.4) total VSL per year. The AMR decreased from 120.5/105 (95% CI: 52.9-176.6) to 92.7/105 (95% CI:39.9-138.5) from 2015 to 2019. The highest mortality burden was observed in the north region (annual average AF = 24.2%, 95% CI: 10.8-35.1; annual average AMR = 137.0/105, 95% CI: 60.9-198.5). The highest AD and economic loss were observed in the east region (annual average AD = 390.0 thousand persons, 95% CI: 170.3-574.6; annual total VSL = 275.6 billion USD, 95% CI: 120.3-406.0). Highest AMR was in the cities with middle level of GDP per capita (PGDP)/urbanization. The majority of the top ten cities of AF, AMR and VSL were in high and middle PGDP/urbanization regions. CONCLUSION: There were significant regional and socioeconomic disparities in PM2.5 attributed mortality burden among Chinese cities, suggesting differential mitigation policies are required for different regions in China.

2.
PLoS One ; 16(9): e0256879, 2021.
Article in English | MEDLINE | ID: covidwho-1403303

ABSTRACT

This paper uses event study based on the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model to study the impact of the COVID-19 outbreak on China's financial market. It finds that the pandemic had an overall significant and negative impact on the stock prices of firms listed on SSE, SZSE and ChiNext. However, such impact appeared to be heterogeneous across industries, affecting listed firms in industries such as pharmaceutical and telecommunications positively, but those in services industries such as accommodation, catering, and commercial services negatively. Apparently, a crisis for some had been an opportunity for others. In addition, this paper seeks to understand the micro mechanism behind the heterogeneity of pandemic shock from the perspective of firms' financial position. It finds that listed firms with higher debt level were hit harder, whereas those with more net cash flow had displayed higher resilience against the blow of the pandemic. However, the opposite pattern is found among those listed on ChiNext and in industries severely devastated by the pandemic. These findings have policy implications in terms of preventing systemic financial risks and facilitating recovery during pandemic-induced economic downturns. It also helps investor adjust investment strategies, hedge against risks, and secure gains when the market conditions in general are unfavorable.


Subject(s)
COVID-19/economics , COVID-19/epidemiology , Models, Economic , China/epidemiology , Financial Management , Industry , Investments
3.
ACS Sens ; 6(4): 1613-1620, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1171547

ABSTRACT

In this work, we developed a method to detect two viral marker proteins, the main protease and the spike protein (S protein), of SARS-CoV-2, as well as a host marker, chemokine receptor 5 (CCR5), which is associated with the risk of developing the severe acute respiratory syndrome. This assay can be completed in two steps in a label-free fashion, yielding a "signal-on" signal readout, which usually cannot be attained by electrochemical label-free detection using no labels or markers to tag the target protein. The proposed assay also utilizes no antibodies or enzyme-based reagents. The method achieves this performance by moderating the frequency of electrochemical potential scanning such that the scanning rate keeps pace with, or "resonances" with, the molecular motion of the probe molecule. This method has been successfully applied to detect the three target proteins in serum samples collected from patients infected with SARS-CoV-2, and the results indicate a strong correlation with the risk of deteriorating into severe acute conditions after virus infection. Soon, the clinical application of this method may provide a low-cost but effective method for virus surveillance in the general public.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL